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Abstract 

A numerical solution based on a finite-difference approximation to the nonlinear equation of an electrolytic convective diffusion problem, 

using a staggered-grid structure for the velocity and concentration field, is described. The effect of externally imposed magnetic force fields 
is manifested by additional driving terms in the ionic flux and momentum equations. The computed overall current density/magnetic flux 
density relationship may be represented by a simple power regression, in agreement with experimental findings. 0 1997 Published by 
Elsevier Science S.A. 
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1. Introduction 

Pursuant to the seminal work of Levich [ I], convective 
diffusion problems became an integral part of the theory of 
transport phenomena, and acquired particular prominence in 
the analysis of concentration boundary layers existing in elec- 
trolytic solutions during the passage of electric current. Con- 
vective diffusion is routinely treated in textbooks of 
electrochemical engineering e.g. [ 2-71. A variety of analyt- 
ical and numerical solutions is available also in the journal 
literature, treating primarily linear problems. 

A challenging case is presented by electrolytic systems 
where an external force field is coupled with the imposed 
electric field. Magnetic/electric field interactions are one 
example of this class of problems [8-l 11, often requiring 
unconventional techniques for the solution of the governing 
nonlinear differential equations. The purpose of this paper is 
to summarise a recently developed approach [ lo] to a par- 
ticular convective diffusion problem arising in magnetically 
assisted electrolysis (magneto-electrolysis). 

2. Problem formulation 

The system consists of a rectangular electrolytic cell with 
parallel-plate vertical electrodes (one anode and one cath- 
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ode) in the (n,z) plane. A uniform magnetic held, imposed 
horizontally in the z-coordinate direction, and perpendicu- 
larly to the uniform electric field in they-coordinate direction, 
generates a magnetohydrodynamic body force in the vertical 
x-coordinate direction. This force modifies free convective 
conditions in the boundary layer adjacent to the electrode, by 
interacting with the gravity field. With appropriate simplifi- 
cations of the constitutive (vectorial) relationships discussed 
earlier [ 10,111, the convective diffusion problem is reduced 
to a set of partial differential equations consisting of (i) the 
continuity equation 

u,+u,=o 

(ii) the ionic flux equation 

(1) 

UC, + ucy = Dcyr + nFDB( UC,, + cu,) IRT 

and( iii) the momentum equation 

(2) 

vu,), + ga( c - co) lpo + nFBDc,lp,, = 0 (3) 

with associated boundary conditions set: x=0: u = u =O; 
c=c,;y=O: u=v=O; c=O; andy-+a: u=o=O; c+cO. In 
Eq. (3) the buoyancy term is shorthand for gC,cu,( ck - cko) / 
po, carrying ionic densification coefficients and ionic concen- 
trations, in order to avoid confusion arising from grid sub- 
scripts during discretisation (Section 3.4). The subscripted 
variables in Eqs. ( I)-( 3) denote partial derivatives, with the 
exception of po. 
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From the viewpoint of electrochemical engineering, the 
prime figure of merit of convective diffusion is the magnitude 
of the current density at the electrode: 

J= lnFDc,,l,=, (4) 

requiring the additional computation of the concentration gra- 
dient at the electrode surface. 

3. The numerical solution scheme 

3.1. Basic notions 

Due to the magnetic field interaction terms in the ionic flux 
and the momentum relationships, Eqs. ( I)-( 3) do not pos- 
sess an analytical solution. An attractive numerical solution 
method involves an iterative (Gauss-Seidel type) computa- 
tion scheme for the (u,u) velocity field and the electrolyte 
concentration c. Typically, one velocity component is iterated 
until convergence is reached, then the other velocity com- 
ponent is iterated using me converged value of the first one. 
The procedure is repeated for the electrolyte concentration. 
The next set of iterations starts with the converged values of 
variables from the previous iteration set and the procedure is 
repeated until changes in values of all variables fall within a 
preset error-tolerance range. 

3.2. The steady-state approach 

A conventional path is to discretise Eqs. ( 1 )-( 3) by appro- 
priate finite-difference approximations to derivatives, and to 
solve the discretised equations by a Gauss-Seidel iteration 
scheme [ 121, using simultaneous overrelaxation [ 13-151. A 
systematic search for stable and efficient algorithms indicates 
that the momentum equation solved for velocity component 
u has an acceptable rate of convergence with any positive 
overrelaxation parameter, although parameters larger than 
unity are, in principle, preferable for fast convergence. The 
particular numerical value of the overrelaxation parameter is, 
however, of little importance here, since the ionic flux equa- 
tion cannot be solved in this manner, even if it is transformed 
into a unidimensional initial-value diffusion equation, by let- 
ting u be the equivalent of time, and treated by a backward 
time-difference algorithm (which normally guarantees 
convergence). The relative (and a priori unknown) distance 
of the initial guess set for u, c and c from their true values 
also determines if divergence occurs. In summary, a conven- 
tional steady-state approach is ineffective for the solution of 
the equation set. The time-transient methods shown in Sec- 
tion 3.4 combined with a staggered-grid structure leads, 
however, to a successful solution. 

3.3. The staggered-grid structure 

The usefulness of the staggered-grid principle has been 
shown e.g. [ 16,171 in dealing with the numerical solution of 
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Fig. 1. The staggered-grid structure employed in the numerical solution. 

equations prone to instability. If the faces of a control area 
are located in the middle of two adjacent nodes, then at any 
arbitrary value of y the continuity equation over the control 
area is integrated to ui+ ,,2-u,_ ,,2 = 0, since u,=O. By 
applying a piecewise-linear profile to u at the midway loca- 
tions, i.e. by setting 

(ui+,+ui)/2-(ui+u~~,)/2=o 

the discretised form 

(5) 

u,+-tl- ui-,=o (6) 

is obtained. The condition of equality of velocities at alternate 
nodes instead of adjacent ones implies the use of a coarser 
grid, hence a somewhat diminished accuracy. More seriously, 
Eq. (6) can easily be satisfied by unrealistic (e.g. ‘zigzag’ ) 
velocity fields leading to physically absurd results. However, 
the staggered-grid principle can successfully be applied if the 
velocity nodes are placed on the faces of the control area, 
while nodes for the other variables are kept at the centre of 
the control area. The additional programming required (e.g. 
with certain interpolations between the two grid position sets) 
is a small price to pay for the gain of the stability. 

The approach is illustrated in Fig. 1. The u-grid is shifted 
upward by a half-grid size such that the uiXi positions are on 
the top face of the i&control area. The u-grid is shifted to the 
right by a half-grid size such that the uij positions are located 
on the right face of the ij-control area. The concentration 
grid remains unchanged, i.e. its nodes are located at the centre 
of the control area. The electrode surface is aligned with the 
u-grid to set the nodes associated with surface velocity onto 
the electrode surface facing the electrolyte. The final discre- 
tised form of the continuity equation: 
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is stable and wavy velocity field solutions, which can appear 
without a staggered-grid configuration, are avoided. 

3.4. Numerical solution via the time-transient method 

The effect of the initial guess set on convergence is elim- 
inated by the adoption of the time-transient method [ I 81 with 
certain refinements. A second and equally important property 
of this approach is that the initial values of all variables and 
parameters are physically known at zero time, hence no ‘gues- 
stimation’ is necessary. The transient portion of the solution 
provides the unsteady-state behaviour of the system, allowing 
an analysis of convection dynamics. This information is addi- 
tional to the steady-state solution, which is, nevertheless, the 
primary goal of the numerical solution. 

The procedure is further simplified if density changes are 
ignored, except in the buoyancy force appearing in the 
momentum equation. The discretised form may be written as 

Ui,,=ui,j+At{Y[(ui,j+~-2u,,j+ui,j-~)l(AY)21 

-a(cz,j-co)g+ (zFoBI~o)(c;.,+I-ci,j)lA~J (8) 

where UiJ denotes the computed value of uij at the end of a 
time step. The discretised form of the ionic tlux equation 
becomes 

C;,j=c,,j+At(~[(c;,j+~-2c,,j+ci,j-~)/(Ay>*l 
-~i,j(Ci+~,~-Ci-~,j)/2A~-~.~,j(~,,j+~-~;,j-~)/2Ay 

+ (zFBDIRT) Lci,jCui,j+ I + ui- l.j+ I 

-~,~-~-24-,,~-,)/4Ay 

+~i,j(Ci,j+~-Ci,,-~)/2A~l I (9) 

where C,, denotes the computed value of ciJ at the end of 
each time step. This is a complicated equation due to the 
necessity of interpolation to compensate for the staggered 
grid. 

The solution of Eqs. (7)-( 9) is obtained as follows. First, 
Eq. (8) is solved for u and the obtained values are employed 
in solving Eq. (9) for c. Solving Eq. (7) for L’, in terms of 
the K and c values just obtained, completes a time step. The 
procedure is repeated for each time step until steady state is 
reached. Finally, the current density is calculated from the 
discretised form of Eq. (4) : 

J= InFD(Ci,o-Ci.l)lAyI ( 10) 

Steady state is assumed to have been reached if the com- 
puted current density change between adjacent time steps is 
within a preset error limit. 

3.5. Numerical aspects 

The stability of the numerical solution depends strongly 
on the grid size. In principle, Ax and Ay should be large and 
At should be small, but for sufficient accuracy, the grid state 
should also be small. A good compromise between speed, 

stability and accuracy was found by using a 100 X 100 grid 
for the space coordinates, and a time step of 0.001 s. Steady 
state was assumed when the current density between two 
adjacent time steps changed less than 1 p,A cm- * (the meas- 
ured current density range is 200-2300 PA cm--‘). Depend- 
ing on the relative strength of free convection (i.e. on the 
magnitude of the densification coefficients) the time-tran- 
sient profiles reached steady state at about 200 simulated 
seconds (strong convection; acidic cupric sulphate electro- 
lyte), or about 600 simulated seconds (weak convection; 
alkaline ferri/ferro-cyanide electrolyte). 

An important result of the numerical solution is that it 
provides proof for the soundness of the power relationships 
between current density and magnetic flux density 

J=J,+aB” (11) 

possessing ? values close to unity. Regression analysis of 
experimental current density data [ IO,1 1 ] corroborates the 
form of Eq. ( 11) , where the numerical values of (2 and m 
depend on the nature and the composition of the electrolyte. 
Thus, the simplified model offers a reasonable approximation 
to the real-life behaviour of a certain class of magnetically 
assisted convective diffusion systems. 

4. Final remarks 

The numerical solution scheme presented in this paper may 
readily be adapted to convective diffusion problems arising 
from the imposition of arbitrary force fields. In the instance 
of space- and/or time-dependent physical parameters, the 
algorithmic structure would be more complex on account of 
additional terms in the constitutive equations.. hence a more 
sophisticated staggered-grid configuration may be necessary. 
The time-transient approach would be advantageous for both 
steady-state and unsteady-state solutions inasmuch as the 
same numerical scheme could be utilised without major 
modifications. 
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Appendix A. Nomenclature 

a regression parameter (Eq. ( 11) ) 
B magnetic flux density (T) 
c value of c at the end of a time step (mol m - 3, 
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C 

D 
F 

g 
J 

m 
n 
R 
3 
T 
t 
u 
u 
x 

Y 

lit 
u 

P 

electrolyte concentration; cO its value in the 
electrolyte bulk (mol m-3) 
electrolyte diffusivity ( m2 s-‘) 
Faraday’s constant (96 487 C mol-‘) 
acceleration due to gravity (98 1 cm s-*) 
current density; JO its value in the absence of a 
magnetic field (A m-‘) 
regression parameter (Eq. ( 11) ) 
valency 
universal gas constant (8.3144 J K-’ mol-‘) 
coefficient of determination (regression analysis) 
temperature (“C) 
time (s) 
velocity component along the x-coordinate (m s- ‘) 
velocity component along the y-coordinate (m s -. ’ ) 
coordinate along the vertical electrode height (m) 
coordinate normal to the vertical electrode (m) 
densification coefficient (kg mol - ’ ) 
increment 
kinematic viscosity ( m2 s - ’ ) 
density; pO its value in the electrolyte bulk (kg 
me3) 

Subscripts 

i node position in the x-direction 

j node position in the y-direction 
k ionic species 
X partial derivative with respect to the x-coordinate 

Y partial derivative with respect to the y-coordinate 
2 coordinate along the horizontal electrode width 
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